Curriculum Resources

Take learning to the next level and transform the way you teach with a vast library of ready-to-use, standards-aligned, adaptable curriculum resources.
The resources listed below are either available with an Online Learning Subscription which allows you to instruct, assess and track student performance or as individual hands-on classroom resources which can be purchased. Choose from Multimedia Lessons, Curriculum Mastery Games, Flip Charts, Visual Learning Guides, Flash Cards, Vocabulary Cards,
and Curriculum Modules available on our online store. PREMIUM ONLINE LEARNING SUBSCRIPTION OPTIONS

- Select By Standard
- CURRICULUM RESOURCES
- General Science
- Life Science / Biology
- Human Body
- Earth Science
- Physical Science
- Chemistry
- Math
- Language Arts
- Social Studies

- Home
- >Curriculum Resources
- >Sixth Grade Mathematics resources
- >
# Surface Areas of Solid Figures Flip Chart

Back

FREE Trial to

Online Learning

Online Learning

Shop for printed

Flip Charts

Flip Charts

❮

1

/

2

❯

S 9 x 6(3.14) + 2 x 9(3.14) • Solid figures are 3-dimensional figures that have length, width, and height. • The surface area of a solid figure is the sum of the areas of all its surfaces or faces. • A net is a pattern made to show each face of a solid figure flat. Surface Area of a Prism Surface Area of a Cylinder Surface Area of a Pyramid flattened cube rectangular prism 6 in. 3 ft 9 ft 8 in. 5 ft 6 ft h 5 ft 8 in. pyramid cylinder flattened cylinder r h flattened pyramid triangular face flattened prism cube front top side • Use the formula A = • w to find the area of each face. Face A : A = 6 x 4 = 24 Face B : A = 8 x 6 = 48 Face C : A = 8 x 4 = 32 Face D : A = 8 x 6 = 48 Face E : A = 8 x 4 = 32 Face F : A = 6 x 4 = 24 S = 85 ft2 S = S2 + 4 x ( b • h ) S = 25 + 4 x 15 S = 25 + 60 S 226.08 ft2 S = h x (2 r) + 2 x ( r2) S 9 x 18.84 + 2 x 28.26 S 169.56 + 56.52 4 in. 4 in. 6 in. F A E B C D A C E B D Surface Area (S) = area of square (A) + 4 x (area of triangular face) Surface Area (S) = area of lateral surface + 2 x (area of each base) 1 2 S = 52 + 4 ( x 5 x 6 ) 1 2 lateral surface base circumference of base r base r S = 9 x 6 + 2 x 9 S = 9 x (2 x x 3) + 2 x ( x 32) S © Copyright NewPath Learning. All Rights Reserved. 93-4609 www.newpathlearning.com Surface Areas of Solid Figures top face side face side face front face opposite to front face bottom face

• Solid figures are that have length, width, and height. • The surface area of a solid figure is the of the of all its surfaces or . • A is a pattern made to show each face of a solid figure flat. Surface Area of a Prism Surface Area of a Cylinder Surface Area of a Pyramid flattened cube rectangular prism 6 in. 3 ft 9 ft 8 in. 5 ft 6 ft h 5 ft 8 in. pyramid cylinder flattened cylinder r h flattened pyramid triangular face flattened prism cube front top side • Use the formula A = • w to find the area of each face. Face A : A = 6 x 4 = 2 4 Face B : A = 6 x 4 = Face C : A = 6 x 4 = Face D : A = 6 x 4 = Face E : A = 6 x 4 = Face F : A = 6 x 4 = S = 85 ft2 S = S2 + 4 x ( b • h) S = 5 + 4 x 15 S = 25 + 60 S 226.08 ft2 4 in. 4 in. 6 in. F A E B C D A C E B D Surface Area (S) = area of square (A) + 4 x (area of triangular face) Surface Area (S) = area of lateral surface + 2 x (area of each base) 1 2 S = 52 + 4 ( x 5 x 6 ) 1 2 lateral surface base circumference of base r base r Key Vocabulary Terms • base • circumference • cylinder • face • lateral area • prism • pyramid • solid figure • surface area S 9 x 6 ( 3.14 ) + 2 x 9 ( 3.14 ) S = h x (2 r) + 2 x ( r2) S 9 x 18.84 + 2 x 28.26 S 169.56 + 56.52 S = 9 x 6 + 2 x 9 S = 9 x ( 2 x x 3 ) + 2 x ( x 32) © Copyright NewPath Learning. All Rights Reserved. 93-4609 www.newpathlearning.com Surface Areas of Solid Figures top face side face side face front face opposite to front face bottom face \|xiBAHBDy01686rzu