Curriculum Resources

Take learning to the next level and transform the way you teach with a vast library of ready-to-use, standards-aligned, adaptable curriculum resources.
The resources listed below are either available with an Online Learning Subscription which allows you to instruct, assess and track student performance or as individual hands-on classroom resources which can be purchased. Choose from Multimedia Lessons, Curriculum Mastery Games, Flip Charts, Visual Learning Guides, Flash Cards, Vocabulary Cards,
and Curriculum Modules available on our online store. PREMIUM ONLINE LEARNING SUBSCRIPTION OPTIONS

- Select By Standard
- BROWSE CURRICULUM
- General Science
- Life Science / Biology
- Human Body
- Earth Science
- Physical Science
- Chemistry
- Math
- Language Arts
- Social Studies

- Home
- >Curriculum Resources
- >Sixth Grade Mathematics resources
- >
# Multiplying & Dividing Integers Flip Chart

Back

FREE Trial to

Online Learning

Online Learning

Shop for printed

Flip Charts

Flip Charts

❮

1

/

2

❯

• Multiplication is repeated addition. • Multiplication with integers is commutative • Division is the inverse of multiplication • The same sign rules apply to multiplication and division of integers. – 5 – 4 – 3 – 2 – 1 – 10 – 12 – 11 – 9 – 8 – 7 – 6 5 4 3 2 1 10 11 12 9 8 6 0 7 4 x 3 means to add 3 four times: • Similarly, the product of 4 and – 3 means to add – 3 four times: Multiplying Integers Dividing Integers (-3) (-3) (-3) (-3) 4 groups of -3 = -12 3 + 3 + 3 + 3 –3 + (–3) + (–3) + (–3) –3 x (–2) = 6 5 x (–3) = –15 –15 ÷ (–3) = 5 –5 x (–3) = 15 15 ÷ (–3) = –5 6 ÷ (–3) = –2 –3 x 4 = –4 x (3) Example Rule You multiply integers just as you do whole numbers, except that you determine the sign of the product using these rules. If the factors have different signs, the product is negative. If the factors have the same signs, the product is positive. If one factor is zero, the product is zero. – 7 x 4 = – 28 – 4 x 0 = 0 – 8 x – 9 = 72 6 x 2 = 12 5 x – 3 = – 15 Example Rule • You cannot divide an integer by 0. If the dividend and divisor have different signs, the quotient is negative. If the dividend and divisor have the same signs, the quotient is positive. Zero divided by any integer equals 0. – 12 ÷ 4 = – 3 32 ÷ 4 = 8 15 ÷ (– 3) = – 5 – 21 ÷ (– 3) = 7 0 9 = 0 0 = 0 – 8 same signs product is positive different signs quotient is negative © C opyright NewPath Learning. All Rights Reserved. 93-4606 www.newpathlearning.com Multiplying & Dividing Integers

• Multiplication is • Multiplication with integers is commutative • Division is the inverse of multiplication • The same sign rules apply to multiplication and division of integers. – 5 – 4 – 3 – 2 – 1 – 10 – 12 – 11 – 9 – 8 – 7 – 6 5 4 3 2 1 10 11 12 9 8 6 0 7 4 x 3 means to times: • Similarly, the product of 4 and -3 means to times: Multiplying Integers Dividing Integers 4 groups of -3 = -12 3 + 3 + 3 + 3 –3 + (–3) + (–3) + (–3) –3 x (–2) = 6 5 x (–3) = –15 –15 ÷ (–3) = 5 –5 x (–3) = 15 15 ÷ (–3) = –5 6 ÷ (–3) = –2 –3 x 4 = –4 x ( –3 ) Example Rule You multiply integers just as you do whole numbers, except that you determine the sign of the product using these rules. If the factors have different signs, the product is negative. If the factors have the same signs, the product is positive. If one factor is zero, the product is zero. Example Rule • You cannot divide an integer by 0. If the dividend and divisor have different signs, the quotient is negative. If the dividend and divisor have the same signs, the quotient is positive. Zero divided by any integer equals 0. Key Vocabulary Terms • commutative • dividend • divisor • factor • integer • product • quotient • repeated addition © Copyright NewPath Learning. All Rights Reserved. 93-4606 www.newpathlearning.com Multiplying & Dividing Integers \|xiBAHBDy01674ozX