To create a custom lesson, click on the check boxes of the files you’d like to add to your
lesson and then click on the Build-A-Lesson button at the top. Click on the resource title to View, Edit, or Assign it.
NGSS.HS-ESS.EARTH AND SPACE SCIENCE
HS-ESS1. Earth’s Place in the Universe - Students who demonstrate understanding can:HS-ESS1-1. Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun’s core to release energy that eventually reaches Earth in the form of radiation.
HS-ESS1-2. Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe.
HS-ESS1-4. Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.
HS-ESS1-5. Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.
HS-ESS1-6. Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth’s formation and early history.
HS-ESS1.DCI. Disciplinary Core IdeasESS1.A: The Universe and Its StarsESS1.A:1. The star called the sun is changing and will burn out over a lifespan of approximately 10 billion years. (HS-ESS1-1)
ESS1.A:3. The Big Bang theory is supported by observations of distant galaxies receding from our own, of the measured composition of stars and non-stellar gases, and of the maps of spectra of the primordial radiation (cosmic microwave background) that still fills the universe. (HS-ESS1-2)
ESS1.B: Earth and the Solar SystemESS1.B:1. Kepler’s laws describe common features of the motions of orbiting objects, including their elliptical paths around the sun. Orbits may change due to the gravitational effects from, or collisions with, other objects in the solar system. (HS-ESS1-4)
ESS1.C: The History of Planet EarthESS1.C:2. Although active geologic processes, such as plate tectonics and erosion, have destroyed or altered most of the very early rock record on Earth, other objects in the solar system, such as lunar rocks, asteroids, and meteorites, have changed little over billions of years. Studying these objects can provide information about Earth’s formation and early history. (HS-ESS1-6)
ESS2.B: Plate Tectonics and Large-Scale System InteractionsESS2.B:1. Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geologic history. (ESS2.B Grade 8 GBE) (secondary to HS-ESS1-5)
PS1.C: Nuclear ProcessesPS1.C:1. Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of rocks and other materials. (secondary to HS-ESS1-5), (secondary to HS-ESS1-6)
HS-ESS2. Earth’s Systems - Students who demonstrate understanding can:HS-ESS2-1. Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.
HS-ESS2-2. Analyze geoscience data to make the claim that one change to Earth’s surface can create feedbacks that cause changes to other Earth’s systems.
HS-ESS2-3. Develop a model based on evidence of Earth’s interior to describe the cycling of matter by thermal convection.
HS-ESS2-4. Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate.Quiz, Flash Cards, Worksheet, Game Climate
HS-ESS2-5. Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes.
HS-ESS2-7. Construct an argument based on evidence about the simultaneous coevolution of Earth’s systems and life on Earth.
HS-ESS2.CC. Crosscutting ConceptsHS-ESS2.CC.2. Energy and MatterHS-ESS2.CC.2.2. Energy drives the cycling of matter within and between systems. (HS-ESS2-3)
HS-ESS2.DCI. Disciplinary Core IdeasESS2.A: Earth Materials and SystemsESS2.A:2. Evidence from deep probes and seismic waves, reconstructions of historical changes in Earth’s surface and its magnetic field, and an understanding of physical and chemical processes lead to a model of Earth with a hot but solid inner core, a liquid outer core, a solid mantle and crust. Motions of the mantle and its plates occur primarily through thermal convection, which involves the cycling of matter due to the outward flow of energy from Earth’s interior and gravitational movement of denser materials toward the interior. (HS-ESS2-3)
ESS2.B: Plate Tectonics and Large-Scale System InteractionsESS2.B:1. The radioactive decay of unstable isotopes continually generates new energy within Earth’s crust and mantle, providing the primary source of the heat that drives mantle convection. Plate tectonics can be viewed as the surface expression of mantle convection. (HS-ESS2-3)
ESS2.B:2. Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geologic history. Plate movements are responsible for most continental and ocean-floor features and for the distribution of most rocks and minerals within Earth’s crust. (ESS2.B Grade 8 GBE) (HS-ESS2-1)
ESS2.D: Weather and ClimateESS2.D:1. The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space. (HS-ESS2-4)Quiz, Flash Cards, Worksheet, Game Climate
ESS2.D:3. Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate. (HS-ESS2-6), (HS-ESS2-4)Quiz, Flash Cards, Worksheet, Game Climate
ESS2.E: BiogeologyESS2.E:1. The many dynamic and delicate feedbacks between the biosphere and other Earth systems cause a continual co-evolution of Earth’s surface and the life that exists on it. (HS-ESS2-7)
PS4.A: Wave PropertiesPS4.A:1. Geologists use seismic waves and their reflection at interfaces between layers to probe structures deep in the planet. (secondary to HS-ESS2-3)
HS-ESS3. Earth and Human Activity - Students who demonstrate understanding can:HS-ESS3-1. Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
HS-ESS3-2. Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.*
HS-ESS3-5. Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems.Quiz, Flash Cards, Worksheet, Game Climate
HS-ESS3-6. Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.Quiz, Flash Cards, Worksheet, Game Oceans
HS-ESS3.DCI. Disciplinary Core IdeasESS2.D: Weather and ClimateESS2.D:1. Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere. (secondary to HS-ESS3-6)Quiz, Flash Cards, Worksheet, Game Climate
ESS3.A: Natural ResourcesESS3.A:2. All forms of energy production and other resource extraction have associated economic, social, environmental, and geopolitical costs and risks as well as benefits. New technologies and social regulations can change the balance of these factors. (HS-ESS3-2)Quiz, Flash Cards, Worksheet, Game Oceans
ESS3.B: Natural HazardsESS3.B:1. Natural hazards and other geologic events have shaped the course of human history; [they] have significantly altered the sizes of human populations and have driven human migrations. (HS-ESS3-1)
ESS3.D: Global Climate ChangeESS3.D:2. Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities. (HS-ESS3-6)Quiz, Flash Cards, Worksheet, Game Oceans
NGSS.HS-LS.LIFE SCIENCE
HS-LS1. From Molecules to Organisms: Structures and Processes - Students who demonstrate understanding can:HS-LS1-1. Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.
HS-LS1-2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.
HS-LS1-3. Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.
HS-LS1-4. Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.
HS-LS1-5. Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.
HS-LS1-7. Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy.
HS-LS1.CC. Crosscutting ConceptsHS-LS1.CC.3. Structure and FunctionHS-LS1.CC.3.1. Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of different components, and connections of components to reveal its function and/or solve a problem. (HS-LS1-1)
HS-LS1.DCI. Disciplinary Core IdeasLS1.A: Structure and FunctionLS1.A:1. Systems of specialized cells within organisms help them perform the essential functions of life. (HS-LS1-1)
LS1.A:2. All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins, which carry out most of the work of cells. (HS-LS1-1) (Note: This Disciplinary Core Idea is also addressed by HS-LS3-1.)
LS1.A:3. Multicellular organisms have a hierarchical structural organization, in which any one system is made up of numerous parts and is itself a component of the next level. (HS-LS1-2)
LS1.A:4. Feedback mechanisms maintain a living system’s internal conditions within certain limits and mediate behaviors, allowing it to remain alive and functional even as external conditions change within some range. Feedback mechanisms can encourage (through positive feedback) or discourage (negative feedback) what is going on inside the living system. (HS-LS1-3)
LS1.B: Growth and Development of OrganismsLS1.B:1. In multicellular organisms individual cells grow and then divide via a process called mitosis, thereby allowing the organism to grow. The organism begins as a single cell (fertilized egg) that divides successively to produce many cells, with each parent cell passing identical genetic material (two variants of each chromosome pair) to both daughter cells. Cellular division and differentiation produce and maintain a complex organism, composed of systems of tissues and organs that work together to meet the needs of the whole organism. (HS-LS1-4)
LS1.C: Organization for Matter and Energy Flow in OrganismsLS1.C:1. The process of photosynthesis converts light energy to stored chemical energy by converting carbon dioxide plus water into sugars plus released oxygen. (HS-LS1-5)
LS1.C:3. As matter and energy flow through different organizational levels of living systems, chemical elements are recombined in different ways to form different products. (HS-LS1-6), (HS-LS1-7)
LS1.C:4. As a result of these chemical reactions, energy is transferred from one system of interacting molecules to another and release energy to the surrounding environment and to maintain body temperature. Cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and new compounds are formed that can transport energy to muscles. (HS-LS1-7)
HS-LS2. Ecosystems: Interactions, Energy, and Dynamics - Students who demonstrate understanding can:HS-LS2-2. Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
HS-LS2-3. Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.
HS-LS2-4. Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
HS-LS2-5. Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
HS-LS2.CC. Crosscutting ConceptsHS-LS2.CC.4. Energy and MatterHS-LS2.CC.4.2. Energy drives the cycling of matter within and between systems. (HS-LS2-3)
HS-LS2.DCI. Disciplinary Core IdeasLS2.B: Cycles of Matter and Energy Transfer in EcosystemsLS2.B:1. Photosynthesis and cellular respiration (including anaerobic processes) provide most of the energy for life processes. (HS-LS2-3)
LS2.B:2. Plants or algae form the lowest level of the food web. At each link upward in a food web, only a small fraction of the matter consumed at the lower level is transferred upward, to produce growth and release energy in cellular respiration at the higher level. Given this inefficiency, there are generally fewer organisms at higher levels of a food web. Some matter reacts to release energy for life functions, some matter is stored in newly made structures, and much is discarded. The chemical elements that make up the molecules of organisms pass through food webs and into and out of the atmosphere and soil, and they are combined and recombined in different ways. At each link in an ecosystem, matter and energy are conserved. (HS-LS2-4)
LS2.B:3. Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged among the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes. (HS-LS2-5)
LS2.D: Social Interactions and Group BehaviorLS2.D:1. Group behavior has evolved because membership can increase the chances of survival for individuals and their genetic relatives. (HS-LS2-8)
PS3.D: Energy in Chemical ProcessesPS3.D:1. The main way that solar energy is captured and stored on Earth is through the complex chemical process known as photosynthesis. (secondary to HS-LS2-5)
HS-LS3. Heredity: Inheritance and Variation of Traits - Students who demonstrate understanding can:HS-LS3-1. Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.
HS-LS3-2. Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.
HS-LS3-3. Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.
HS-LS3.DCI. Disciplinary Core IdeasLS1.A: Structure and FunctionLS1.A:1. All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins. (secondary to HS-LS3-1) (Note: This Disciplinary Core Idea is also addressed by HS-LS1-1.)
LS3.A: Inheritance of TraitsLS3.A:1. Each chromosome consists of a single very long DNA molecule, and each gene on the chromosome is a particular segment of that DNA. The instructions for forming species’ characteristics are carried in DNA. All cells in an organism have the same genetic content, but the genes used (expressed) by the cell may be regulated in different ways. Not all DNA codes for a protein; some segments of DNA are involved in regulatory or structural functions, and some have no as-yet known function. (HS-LS3-1)
LS3.B: Variation of TraitsLS3.B:1. In sexual reproduction, chromosomes can sometimes swap sections during the process of meiosis (cell division), thereby creating new genetic combinations and thus more genetic variation. Although DNA replication is tightly regulated and remarkably accurate, errors do occur and result in mutations, which are also a source of genetic variation. Environmental factors can also cause mutations in genes, and viable mutations are inherited. (HS-LS3-2)
HS-LS3.SEP. Science and Engineering PracticesHS-LS3.SEP.2. Analyzing and Interpreting Data - Analyzing data in 9-12 builds on K-8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.HS-LS3.SEP.2.1. Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible. (HS-LS3-3)
HS-LS4. Biological Evolution: Unity and Diversity - Students who demonstrate understanding can:HS-LS4-2. Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.
HS-LS4-3. Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.
HS-LS4-4. Construct an explanation based on evidence for how natural selection leads to adaptation of populations.
HS-LS4.DCI. Disciplinary Core IdeasLS4.B: Natural SelectionLS4.B:1. Natural selection occurs only if there is both (1) variation in the genetic information between organisms in a population and (2) variation in the expression of that genetic information—that is, trait variation—that leads to differences in performance among individuals. (HS-LS4-2), (HS-LS4-3)
LS4.B:2. The traits that positively affect survival are more likely to be reproduced, and thus are more common in the population. (HS-LS4-3)
LS4.C: AdaptationLS4.C:1. Evolution is a consequence of the interaction of four factors: (1) the potential for a species to increase in number, (2) the genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for an environment’s limited supply of the resources that individuals need in order to survive and reproduce, and (4) the ensuing proliferation of those organisms that are better able to survive and reproduce in that environment. (HS-LS4-2)
LS4.C:2. Natural selection leads to adaptation, that is, to a population dominated by organisms that are anatomically, behaviorally, and physiologically well suited to survive and reproduce in a specific environment. That is, the differential survival and reproduction of organisms in a population that have an advantageous heritable trait leads to an increase in the proportion of individuals in future generations that have the trait and to a decrease in the proportion of individuals that do not. (HS-LS4-3), (HS-LS4-4)
LS4.C:3. Adaptation also means that the distribution of traits in a population can change when conditions change. (HS-LS4-3)
NGSS.HS-PS.PHYSICAL SCIENCE
HS-PS1. Matter and Its Interactions - Students who demonstrate understanding can:HS-PS1-1. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.
HS-PS1-2. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.
HS-PS1-4. Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.
HS-PS1-5. Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.
HS-PS1-6. Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.*
HS-PS1.DCI. Disciplinary Core IdeasPS1.A: Structure and Properties of MatterPS1.A:1. Each atom has a charged substructure consisting of a nucleus, which is made of protons and neutrons, surrounded by electrons. (HS-PS1-1)
PS1.A:2. The periodic table orders elements horizontally by the number of protons in the atom’s nucleus and places those with similar chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states. (HS-PS1-1), (HS-PS1-2)
PS1.A:3. The structure and interactions of matter at the bulk scale are determined by electrical forces within and between atoms. (HS-PS1-3), (secondary to HS-PS2-6)
PS1.A:4. Stable forms of matter are those in which the electric and magnetic field energy is minimized. A stable molecule has less energy than the same set of atoms separated; one must provide at least this energy in order to take the molecule apart. (HS-PS1-4)
PS1.B: Chemical ReactionsPS1.B:1. Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set of molecules that are matched by changes in kinetic energy. (HS-PS1-4), (HS-PS1-5)
PS1.B:2. In many situations, a dynamic and condition-dependent balance between a reaction and the reverse reaction determines the numbers of all types of molecules present. (HS-PS1-6)
PS1.B:3. The fact that atoms are conserved, together with knowledge of the chemical properties of the elements involved, can be used to describe and predict chemical reactions. (HS-PS1-2), (HS-PS1-7)
HS-PS2. Motion and Stability: Forces and Interactions - Students who demonstrate understanding can:HS-PS2.DCI. Disciplinary Core IdeasPS2.A: Forces and MotionPS2.A:2. Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. In any system, total momentum is always conserved. (HS-PS2-2)
PS2.A:3. If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system. (HS-PS2-2), (HS-PS2-3)
PS2.B: Types of InteractionsPS2.B:2. Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS-PS2-4), (HS-PS2-5)
PS2.B:3. Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. (HS-PS2-6), (secondary to HS-PS1-1), (secondary to HS-PS1-3)
PS3.A: Definitions of EnergyPS3.A:1. …and “electrical energy” may mean energy stored in a battery or energy transmitted by electric currents. (secondary to HS-PS2-5)
HS-PS3. Energy - Students who demonstrate understanding can:HS-PS3-3. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.*
HS-PS3-4. Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).
HS-PS3.DCI. Disciplinary Core IdeasPS3.A: Definitions of EnergyPS3.A:2. At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. (HS-PS3-2) (HS-PS3-3)
PS3.A:3. These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy can be modeled as either motions of particles or energy stored in fields (which mediate interactions between particles). This last concept includes radiation, a phenomenon in which energy stored in fields moves across space. (HS-PS3-2)
PS3.C: Relationship Between Energy and ForcesPS3.C:1. When two objects interacting through a field change relative position, the energy stored in the field is changed. (HS-PS3-5)
PS3.D: Energy in Chemical ProcessesPS3.D:1. Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding environment. (HS-PS3-3), (HS-PS3-4)
HS-PS4. Waves and Their Applications in Technologies for Information Transfer - Students who demonstrate understanding can:HS-PS4-1. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.Quiz, Flash Cards, Worksheet, Game Light
HS-PS4.DCI. Disciplinary Core IdeasPS4.A: Wave PropertiesPS4.A:1. The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing. (HS-PS4-1)
PS4.A:3. [From the 3–5 grade band endpoints] Waves can add or cancel one another as they cross, depending on their relative phase (i.e., relative position of peaks and troughs of the waves), but they emerge unaffected by each other. (Boundary: The discussion at this grade level is qualitative only; it can be based on the fact that two different sounds can pass a location in different directions without getting mixed up.) (HS-PS4-3)Quiz, Flash Cards, Worksheet, Game Sound
PS4.B: Electromagnetic RadiationPS4.B:1. Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of changing electric and magnetic fields or as particles called photons. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model explains other features. (HS-PS4-3)