EXPONENTS, FACTORS AND FRACTIONS

- In a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. The exponent represents the number of times to multiply the number, or base.
- When a number is represented in this way it is called a power.
- Large numbers can often be rewritten as a product of prime numbers. This is called prime factorization. The number, 384, written with prime factorization is $3 \cdot 2^{\wedge} 7$.
- Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1.
- Exponents are used in scientific notation to make verv large or very str
- Just as

71 PREVIEW

fraction fraction

- Fractior such as

> Please login or register to download the printable version of this study guide.
www.newpathlearning.com operation, ery large.

- Simplifying fractions can also be used to compare and order fractions with different denominators.
- Mixed numbers and improper fractions can also be simplified in order to compare with other fractions.

How to use exponents, factors and fractions:

- Prime factorization is the process of breaking a number into its prime numbers and then writing them as a product. The use of exponents is common with prime factorization. To find the prime factorization of a number, break it into two numbers that are its factors. By repeating the process, until all the numbers are prime, the result will be the product of the prime numbers.

Example: What is the prime factorization of 120 ?

The prime factorization of 120 is $5 \cdot 2 \cdot 3 \cdot 2 \cdot 2=5 \cdot 3 \cdot 2^{3}$

- To solv times ir then a If a nur

Please login or register to download the printable version of this study guide. is raise www.newpathlearning.com the ans

Example: What is $5^{n}-2$? $5^{n}-2 \rightarrow 1 / 5^{2} \rightarrow 1 / 25$

- Scientific notation rewrites very large or very small numbers using powers of 10 .

Example: 3,254,000 in scientific notation is $3.254 \times 10^{\wedge} 6$
.000000978 in scientific notation is $9.78 \times 10^{\wedge}-7$

- If the number is smaller than 1 , the exponent will be negative. If the number is larger than 1 , the exponent will be positive.
- Simplifying fractions uses the greatest common factor, or GCF. If a fraction is very large, look for the GCF of both the numerator and denominator. Then divide both the numerator and denominator by that factor.
- When comparing and ordering fractions, the GCF is used to change the denominators of unlike fractions to denominators of like fractions.

Example: Compare 6/16, 4/32 and $7 / 8 \rightarrow 12 / 32,4 / 32$ and 28/32

- The fractions all can be changed to a denominator of 32 . The fraction $6 / 16$ becomes $12 / 32$ and the fraction $7 / 8$ becomes 28/32. When they have the same denominator, they can be compared, the smallest is $4 / 32$, then $6 / 16$ and the largest is $7 / 8$.
- A mixed number can be changed into a fraction by multiplying the denominator by the whole number and then adding the numerator, this nur stays tr
- To char numera and the become

Please login or register to download the printable version of this study guide. www.newpathlearning.com
nator

|71] PREVIEW

ie
number
er
me.

Try This!

What is the prime factorization of 72,96 , and 384 ?
Simplify the following fractions:
$18 / 24$
49/84
52/208
Order the following fractions from least to greatest:
$1 / 2,3 / 10,14 / 15,4 / 5$

What is $82 / 3$ as an improper fraction?

What is 12 \begin{tabular}{c}
PREVIEW

Please login or register to download the
printable version of this study guide.
www.newpathlearning.com

\hline
\end{tabular}

8^{3}
70
5^{1}
$3^{\wedge}-3$

Evaluate the following:
$2.36 \times 10^{\wedge} 8$
$5.06 \times 10^{\wedge}-7$
© Copyright NewPath Learning. All Rights Reserved.
Permission is granted for the purchaser to print copies for non-commercial educational purposes only. Visit us at www.NewPathLearning.com.

